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ABSTRACT

Score-based diffusion models have achieved remarkable progress in various do-
mains with an ability to generate new data samples that do not exist in the training
set. In this paper, we examine a hypothesis that this phenomenon manifests an inter-
polation effect caused by a smoothing of the empirical score function. Focusing on
settings where the training set lies in a one-dimensional linear subspace, we take a
distribution-agnostic perspective and study the interplay between score smoothing
and the denoising dynamics with mathematically solvable models. We demonstrate
how score smoothing can lead to the generation of samples that interpolate among
the training data within the subspace while avoiding a full memorization of the
training set.

1 INTRODUCTION

In the past years, score-based diffusion models have emerged as an important pillar of generative
modeling in a variety of domains from image and video generation to drug discovery (Sohl-Dickstein
et al., 2015; Song & Ermon, 2019; Ho et al., 2020; Ramesh et al., 2022; Brooks et al., 2024). For
instance, after being trained on datasets of actual images or existing molecular configurations, such
models are capable of transform noise samples into high-quality images or chemically-plausible
molecules. Importantly, the generated samples do not belong to the original training set, indicating an
exciting potential of such models to generalize beyond the training data and, in a sense, be creative.

The creativity of score-based diffusion models has not been fully understood from a theoretical point
of view. At the core of these models is the training of neural networks (NNs) to fit a series of target
functions – called the empirical score functions (ESF) – which will be used to drive the denoising
process. The precise form of these functions are determined by the training set and can be computed
exactly in principle (though inefficient in practice). However, when equipped with the exact precise
ESF instead of the approximate version learned by NNs, the model will end up generate data points
that already exist in the training set (Yi et al., 2023; Li et al., 2024), a phenomenon often called
memorization. This suggests that, for the models to generalize fresh samples beyond the training
set, it is crucial to have certain regularizations on the score function (perhaps implicitly through NN
training) that prevent the ESF to be learned exactly. In particular, Scarvelis et al. (2023) hypothesized
that smoothing the ESF results in a tendency of the generated samples to interpolate among training
data points, but it remains unclear mathematically how score smoothing leads to interpolation.

Meanwhile, a different yet related phenomenon of generative models is hallucination, in which
they generate samples that are qualitatively (and often undesirably) different from the training set.
Fundamentally, both generalization and hallucination concern scenarios where models generate
samples that are distinct from the original training set, with their difference being whether the the new
samples lie within or out of the support of the underlying target distribution. Hence, the hallucination
phenomenon is also related to the tendency of diffusion models to interpolate among or extrapolate
from the training set. Indeed, the recent work of Aithal et al. (2024) proposed “mode interpolation” as
the essence of hallucination and demonstrates its empirical presence when the NN learns a smoother
version of the ESF, but its mathematical mechanism remains unclear as well.

In this work, we will illustrate mathematically how score smoothing in diffusion models could result
in data interpolation and subspace recovery. Focusing on examples where the training data belong to
a one-dimensional subspace, we consider a simple type of local smoothing on the ESF and derive
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that it can lead the denoising dynamics to recover a non-singular density that is supported on the
one-dimensional subspace, thus recovering the subspace from training data.

1.1 NOTATIONS

If p is a smooth probability density on Rd, we call ∇ log p : Rd → Rd its score function (Hyvärinen
& Dayan, 2005). We let pN (x;σ) = (

√
2πσ)−1 exp(−x2/(2σ2)) denote the 1-D Gaussian density

with mean 0 and variance σ2. We write sgn(x) for the sign of x ∈ R and [n] := {1, .., n} for n ∈ N+.

2 BACKGROUND

While score-based diffusion models have many variants, we will focus on a basic one (called the
Variance Exploding version by Song et al. 2021b) for simplicity, where the forward (or noising)
process is defined by the following stochastic differential equation (SDE) in Rd for t ≥ 0:

dxt = dwt , x0 ∼ p0 , (1)

where w is the Wiener process (a.k.a. Brownian motion) in Rd. The marginal distribution of
xt, denoted by pt, is thus fully characterized by the initial one p0 together with the conditional
distributions, pt|0(x|x′) =

∏d
i=1 pN (xi−x′

i;
√
t). A key observation is that this process is equivalent

in distribution to a deterministic dynamics often called the probability flow ODE (Song et al., 2021b)
that is driven by the family of score functions of pt,

dxt = − 1
2st(xt)dt , (2)

where st(x) =∇ log pt(x) . (3)

In generative modeling, p0 is often a distribution of interest that is hard to sample directly (e.g. the
distribution of cat images in pixel space), while when T is large, pT is always close to a Gaussian
distribution (with variance increasing in T ), from which samples are easy to obtain. Thus, to obtain
samples from p0, a insightful idea is to first sample from pT and then follow the reverse (or denoising)
process by simulating (2) backward-in-time.

A main challenge in such a procedure lies in the estimation of the family of score functions ∇ log pt
for t ∈ [0, T ]. In reality, we have no prior knowledge of each pt (or even p0) but only a training
set S = {yk}k∈[n] that is assumed to be sampled from p0. This allows us to define an empirical
version of the noising process where the SDE (1) is now initialized with the marginal distribution
at t = 0 being uniform over the set S (i.e., p(n)0 = 1

n

∑n
k=1 δyk

), and thus xt is distributed as
p
(n)
t (x) := 1

n

∑n
k=1 pt|0(x|yk). In practice, one often uses a neural network (NN) to parameterize a

function sθ(x, t) that approximates the empirical score function (ESF), ∇ log p
(n)
t , and it will serve

as a proxy for ∇ log pt in (2) to drive the denoising process. The NN parameters are usually trained
to minimize variants of the following loss function, which is a squared loss averaged over p(n)t (we
will call it the empirical L2 discrepancy) integrated over time (Song et al., 2021b):

min
θ

∫ T

0

tE
x∼p

(n)
t

[∥sθ(x, t)−∇ log p
(n)
t (x)∥2]dt . (4)

In practice, the minimization problem (4) is often solved numerically via Monte-Carlo sampling
combined with ideas from Hyvärinen & Dayan (2005); Vincent (2011), but we know that the minimum
is attained uniquely by the ESF itself, which can be computed in closed form based on S (details to
be given below). So what if we plug the ESF directly into the denoising dynamics (2) instead of an
NN approximation? In that case, we end up with an empirical version of the denoising process:

dxt = − 1
2∇ log p

(n)
t (xt) , (5)

and the outcome at t = 0 will inevitably be p
(n)
0 . In other words, the model memorizes the training

data instead of generating fresh samples. This suggests that the creativity of the diffusion model
hinges on a sub-optimal solution to (4) and an imperfect approximation to the ESF. Indeed, the
memorization phenomenon can be observed in practice when the models have large capacities relative
to the training set size (Gu et al., 2023; Kadkhodaie et al., 2024), which likely results in too good an
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Figure 1: Illustrating the empirical score function (ESF) and its substitutes in the case of two training
data points in one dimension discussed in Section 3. Left: Comparing the ESF (∇ log p

(n)
t ), the

piece-wise linear approximation (s̄(n)t ), and the τ -smoothed version of the latter (ŝ(n)t,τ ). Center:

NN-learned score functions (sNN
t,λ) under increasing strengths of regularization, λ. Right: ŝ(n)t,τ under

increasing scales of smoothing, τ . Additional details are given in Appendix A.7.

approximation to the ESF. This leads to the hypothesis that regularizing the score estimator gives
rise to the model’s ability to generalize out of the training set, though a theoretical understanding
of the mechanism is still under development. In this work, we will focus on simple setups to show
mathematically how smoothing the ESF can enable the generation of new samples that interpolate
among the training set.

3 MATHEMATICAL ANALYSIS

We start with a simplest setup where d = 1 and S = {−1, 1} consists of only two points. In this case,
at time t, the noised empirical distribution is p(n)t (x) = 1

2 (pN (x+1;
√
t) + pN (x− 1;

√
t)), and the

(scalar-valued) ESF takes the form of d
dx log p

(n)
t (x) = (x̂

(n)
t (x)− x)/t, where we define

x̂
(n)
t (x) :=

pN (x− 1;
√
t)− pN (x+ 1;

√
t)

pN (x− 1;
√
t) + pN (x+ 1;

√
t)

(6)

While prior works have pointed out various smoothing effects arising from NN learning (Xu et al.,
2019; Rahaman et al., 2019; Tirer et al., 2022), their training dynamics is highly difficult to analyze.
In this work, our goal is less ambitious: we aim to show it is possible to cause the output of the
diffusion model to interpolate the training data by smoothing the ESF. Thus, instead of dealing with
NNs directly, we will consider a simple type of function smoothing as a proxy. In one dimension,
given a function f on R and a scalar τ > 0, we define a τ -smoothed version of f to be a new function:

(τ ∗ f)(x) = 1

2τ

∫ x+τ

x−τ

f(x′)dx′ , (7)

obtained by averaging f over [x− τ, x+ τ ]. Interestingly, in Section 4, we will present empirical
evidence that this simple form of function smoothing shares similarities with NN-learned estimators.

3.1 PIECE-WISE LINEAR APPROXIMATION AT SMALL t

The nonlinear denominator in (6) makes it hard to analyze the smoothing of the ESF exactly.
Nonetheless, when t is small, the noise variance is small and x̂

(n)
t (x) is close to sgn(x). Thus, we

will consider a piece-wise linear approximation of the ESF by s̄
(n)
t (x) = (sgn(x)− x)/t. It is not

hard to see that, ∀τ ∈ (0, 1),
(τ ∗ s̄(n)t )(x) = ŝ

(n)
t,τ (x) , (8)

where we further define

ŝ
(n)
t,τ (x) :=


−(x+ 1)/t , if x ≤ −τ ,

−(x− 1)/t , if x ≥ τ ,

(1− τ)x/(τt) , if x ∈ [−τ, τ ] .

(9)
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One can in fact show that when t is small, smoothed versions s̄(n)t and d
dx log p

(n)
t are close to each

other. Quantitatively, the empirical L2 approximation error (similar as in the training loss (4)) is
exponentially small in 1/t as t → 0:

Lemma 1. ∀τ ∈ (0, 1), ∃c, C > 0 such that ∀t ∈ (0, c), it holds that tE
x∼p

(n)
t

[∥ŝ(n)t,τ (x) − (τ ∗
d
dx log p

(n)
t )(x)∥2] ≤ C exp(− (1−τ)2

16t ).

This lemma is proved in Appendix A.1. Hence, to understand the effect of smoothing the ESF, we will
study smoothed versions of s̄(n)t as a proxy. As illustrated in Figure 1 (left), ŝ(n)t,τ is also piece-wise

linear and ŝ
(n)
t,τ ≡ s̄

(n)
t except on [−τ, τ ]. Unlike s̄

(n)
t , the maximum value of |ŝ(n)t,τ | on [−1, 1] is

(1− τ)/t < 1/t and is attained at ±τ . Thus, as τ increases from 0 to 1, the function ŝ
(n)
t,τ becomes

smoother – e.g. as measured by its derivative’s total variation, which equals 2/(τt) – while it deviates
more and more from s̄

(n)
t . Actually, as t → 0, the empirical distribution p

(n)
t becomes increasingly

concentrated near ±1, and hence the difference between the two functions on [−τ, τ ] contributes less
and less to their empirical L2 discrepancy. In fact, the following result implies that as t → 0, we can
choose τ → 1 with 1− τ decreasing in proportion to

√
t so that the approximation error as measured

by the empirical L2 discrepancy still remains on a constant order:
Proposition 2. There is a function F : R → [0, 1] such that, if τt → 1 as t → 0 with (1− τt)

2/t =
κ > 0, then ∃c, C > 0 such that ∀t ∈ (0, c),∣∣∣tEx∼p

(n)
t

[∣∣ŝ(n)t,τt(x)−
d
dx log p

(n)
t (x)

∣∣2]− 1
2F (κ)

∣∣∣ ≤ C
√
t . (10)

Moreover, F (κ) strictly decreases from 1 to 0 as κ increases from 0 to ∞.

In other words, smoothing the ESF with a time-dependent scale τt = 1−
√
κt incurs a loss of (4)

that is balanced across small t asymptotically. This proposition is proved in Appendix A.2.

3.2 EFFECT ON THE DENOISING DYNAMICS

In light of Proposition 2, we will focus on a particular modification to the denoising dynamics where
we replace the ESF by ŝ

(n)
t,τt , with τt = 1−

√
κt for some κ > 0:

d
dtxt = − 1

2 ŝ
(n)
t,τt(xt) . (11)

Thanks to the piece-wise linearity of (9), the backward-in-time dynamics of (11) can be solved
analytically in terms of flow maps:
Proposition 3. For t ∈ (0, 1/κ], the backward-in-time solution to (11) on [0, t] is given by xs =
ϕs|t(xt) for 0 ≤ s ≤ t, where

ϕs|t(x) =


τs
τt
x , if x ∈ [−τt, τt]√
s
t (x+ 1)− 1 , if x ≤ −τt√
s
t (x− 1) + 1 , if x ≥ τt

(12)

The proposition is proved in Appendix A.5, and we illustrate the trajectories characterized by ϕs|t

in Figure 2. The piece-wise linear nature of ŝ(n)t,τt divides the x−
√
t plane into three regions (A, B

and C) with linear boundaries, each defined by x ≤ −τt, x ≥ τt and −τt ≤ x ≤ τt, respectively.
Importantly, trajectories given by ϕs|t do not cross the region boundaries. If at t0 > 0, xt0 falls into
region A (or B), then as t decreases to 0, it will follow a linear path in the x−

√
t plane to y1 = −1

(or y2 = 1). Meanwhile, if xt0 falls into region C, then it will follow a linear path to the x-axis with
a terminal value between −1 and 1. To determine this terminal value, we set s = 0 and obtain that

ϕ0|t(x) =

{
x/τt , if x ∈ [−τt, τt]

sgn(x) , otherwise

Notably, ϕ0|t is invertible when restricted to [−τt, τt]. As a consequence, letting p̂
(n)
0 and p̂

(n)
t

denote the marginal distributions of x0 and xt, we derive that p̂(n)0 = w+δ1 + w−δ−1 + p̂
(n)
0;t , where

4
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Figure 2: Illustration of the dynamics (11) under the smoothed score function studied in Section 3.2.

w+ := Ex∼pt
[1x≥τt ], w− := Ex∼pt

[1x≤−τt ], and

p̂
(n)
0;t (x) :=

{
τtp̂

(n)
t (τtx) , if x ∈ [−1, 1]

0 , otherwise
(13)

If p̂(n)t has positive density on [−τt, τt], then p̂
(n)
0;t also has positive density [−1, 1], corresponding to

a smooth interpolation between the two training data points. Further, (13) also allows us to prove
KL-divergence bounds for p̂(n)0 based on those of p̂(n)t , such as:

Lemma 4. KL(u[−1,1]||p̂
(n)
0 ) = KL(u[−τt,τt]||p̂

(n)
t ), where u[a,b] means the uniform density on [a, b].

As an example, we may consider the backward-in-time dynamics of (11) initialized with the marginal
distribution p̂

(n)
t0 = p

(n)
t0 for some t0 ∈ (0, 1/κ]. This corresponds to first evolving according to the

empirical denoising dynamics down to t0, and then in the rest of the dynamics replace the ESF with a
smoothed approximation, ŝ(n)t,τt ≈ (τt ∗ d

dx log p
(n)
t ). In this case, we can leverage Lemma 4 to show

that p̂(n)0 has a finite KL-divergence from the uniform distribution on [−1, 1]:

Corollary 5. Suppose κ > 0 and 0 < t0 < 1/κ. If xt solves (11) backward-in-time with xt0 ∼ p
(n)
t0 ,

then there is KL(u[−1,1]||p̂
(n)
0 ) ≤ 1

3t0(1−
√
κt0)

+ log
( √

t0
1−

√
κt0

)
+ log(2

√
2π) < ∞.

In contrast, running the empirical denoising dynamics to time 0 results in the empirical distribution
p
(n)
0 , which is fully singular and has infinite KL-divergence with any smooth density on [−1, 1].

3.3 GENERALIZATION TO MORE THAN TWO POINTS

The analysis above can be generalized to the scenario where S consists of n > 2 points spaced
uniformly on an interval [−D,D], that is, yk := 2(k−1)∆−D for k ∈ [n], where ∆ := D/(n−1) =
(yk+1 − yk)/2. We additionally define ak := yk +∆ = (yk + yk+1)/2 for k ∈ [n− 1]. In this case,
we replace (6) in the definition of the empirical score function by

x̂
(n)
t (x) :=

∑n
k=1 ykpN (x− yk,

√
t)∑n

k=1 pN (x− yk,
√
t)

, (14)

and the piece-wise linear approximation to it at small t is now given by

s̄
(n)
t (x) :=


(y1 − x)/t , if x ≤ a1 ,

(yk − x)/t , if x ∈ [ak−1, ak] for k ∈ {2, ..., n− 1} ,

(yn − x)/t , if x ≥ an−1 .

(15)

Moreover, smoothed versions of s̄(n)t can still be written via (8) for τ ∈ (0,∆), where we now define

ŝ
(n)
t,τ (x) :=


(y1 − x)/t , if x ≤ a1 − τ ,

(yn − x)/t , if x ≥ an−1 + τ ,

(yk − x)/t , if x ∈ [ak−1 + τ, ak − τ ],∃k ∈ [n] ,

(∆− τ)(x− ak)/(τt) , if x ∈ [ak − τ, ak + τ ],∃k ∈ [n− 1] ,

(16)

5
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and it is not hard to show that Proposition 2 continues to hold under modifications (details in
Appendix A.2). Furthermore, the backward-in-time dynamics of (11) can also be solved analytically
in a similar fashion, where (12) is replaced by ϕs|t(x) :=

√
s
t (x− y1) + y1 , if x ≤ y1 +

√
κt ,√

s
t (x− yn) + yn , if x ≤ yn −

√
κt ,√

s
t (x− yk) + yk , if x ∈ [yk −

√
κt, yk +

√
κt],∃k ∈ {2, ..., n− 1} ,

∆−
√
κs

∆−
√
κt
(x− ak) + ak , if x ∈ [yk +

√
κt, yk+1 −

√
κt],∃k ∈ [n− 1] .

(17)

Setting s = 0, we see that

ϕ0|t(x) =

{
(∆x− ak

√
κt)/(∆−

√
κt) , if x ∈ [yk +

√
κt, yk+1 −

√
κt],∃k ∈ [n− 1] ,

yargmink |yk−x| , otherwise.

In particular, ϕ0|t(x) is invertible when restricted to ∪k∈[n−1][yk+
√
κt, yk+1−

√
κt]. Hence, similar

to the n = 2 case discussed above, if pt has positive density on [−D,D], then so does p0.

3.4 HIGHER DIMENSIONS: LINE SEGMENT AS HIDDEN SUBSPACE

Among different possible ways to generalize the notion of local smoothing introduced in Section 3 to
higher dimensions, here we choose a simple one that averages over centered cubes. Namely, given
τ > 0 and a (vector-valued) function f on Rd, we define for x = [x1, ..., xk] that

(τ ∗ f)(x) = 1

(2τ)d

∫ x1+τ

x1−τ

...

∫ xd+τ

xd−τ

f(x′)dx′
1...dx

′
d . (18)

Let us consider a case where S = {yk}k∈[n] consists of points that are spaced uniformly on the
first axis of Rd, that is, yk = [yk,1, 0, ..., 0], with −D = y1,1 < ... < yn,1 = D and ∆ defined in a
similar way as in Section 3.3. In this case, for x = [x1, ..., xd], the noised empirical density is

p
(n)
t (x) =

(
1

n

n∑
k=1

pN (x1 − yk,1;
√
t)

) d∏
i=2

pN (xi;
√
t) ,

and the (vector-valued) ESF is given by ∇ log p
(n)
t (x) = [∂1 log p

(n)
t (x), ..., ∂d log p

(n)
t (x)], where

∂1 log p
(n)
t (x) = (x̂

(n)
t (x1)− x1)/t ,

∀i ∈ {2, ..., n} , ∂i log p
(n)
t (x) = − xi/t ,

(19)

where x̂
(n)
t is defined in the same way as in (14) except for replacing each yk by yk,1.

To study the smoothed ESF, τ ∗ ∇ log p
(n)
t , we first observe that for each i ∈ [d], ∂i log p

(n)
t (x)

depends only on xi, and hence the repeated integral in (18) reduces to only the one in the ith
dimension. For i > 1, ∂i log p

(n)
t (x) is a linear function of xi, which is invariant when averaged

over a centered interval. For i = 1, ∂1 log p
(n)
t (x) has the same form as in the d = 1 case

where everything is projected onto the first dimension, and its smoothing can be expressed as
[τ ∗∇ log p

(n)
t (x)]1 = 1

2τt

∫ x1+τ

x1−τ
(x̂

(n)
t (x′)−x′)dx′, which can be further approximated by ŝ

(n)
t,τ (x1)

on the same theoretical grounds as Lemma 1 and Proposition 2. Hence, in summary, we consider the
following vector-valued function as a proxy for τ ∗ ∇ log p

(n)
t :

ŝ
(n)
t,τ (x) := [ŝ

(n)
t,τ (x1),−x2/t, ...,−xd/t]

⊺ . (20)

Similar to in Section 3.3, we consider a scenario where the smoothing occurs at a time-dependent
scale, τt = ∆ −

√
κt. Thus, the dynamics can be approximately written as d

dtxt = − 1
2 ŝ

(n)
t,τt(x),

which is nicely decoupled across dimensions:
d
dtxt,1 = − 1

2 ŝ
(n)
t,τt(xt,1) , (21)

∀i ∈ {2, ..., n} , d
dtxt,i = 1

2xi/t , (22)

Together, the d-dimensional system can be solved as follows:
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Proposition 6. For t ∈ (0, 1/κ], the backward-in-time solution to (21, 22) on [0, t] is given by
xs = Φs|t(xt) = [ϕs|t(xt,1), 0, ..., 0] for 0 ≤ s ≤ t, where ϕs|t is defined in the same way as in (12).

In summary, we see distinct dynamical behaviors in the first and the rest of the dimensions. As
t → 0, all except for the first dimension shrinks to zero at a rate of

√
t, corresponding to a uniform

collapse of the d-dimensional space onto the x1-axis. Meanwhile, the dynamics in the first dimension
is qualitatively similar to the d = 1 case. In particular, if the marginal distribution of xt,1 has a
positive density on [−D,D], then so will x0,1, which implies that x0 admits a non-singular density
that interpolates smoothly among the training data on the desired one-dimensional subspace.

On early stopping. This behavior is different from what can be achieved by denoising under the
exact ESF, either by running it fully to t = 0 or by stopping it at some positive tmin (i.e., early
stopping): the former leads to the collapse onto the training data points (i.e., full memorization),
while in the latter case the terminal distribution is still spread over all d dimensions and equivalent to
adding Gaussian noise to the training data points. In either case, the terminal distribution has infinite
KL-divergence from any smooth density supported on the one-dimensional subspace.

We note that the result above does not yet constitute manifold recovery in a stronger sense, because the
definition (18) depends on choice of the coordinate system while the analysis only applies when the
hidden subspace is one of the axes. To achieve generality, we need to consider alternative definitions
of smoothing in higher dimensions that is invariant to coordinate rotations. We discuss one such
example in the Appendix A.3, which achieves a similar effect on the ESF and results in the same
dynamics as (21) and (22).

4 NUMERICAL ILLUSTRATIONS

4.1 SCORE FUNCTIONS LEARNED BY NNS

To examine the smoothing effect of NN learning empirically, we compare NN-learned score functions
with those obtained by local smoothing in the setting of Section 3 with d = 1 and n = 2. For the
former, we train three-layer MLPs to fit the ESF under regularization on the model parameters with
various strengths, and additional details are given in Appendix A.7. As shown in Figure 1 (center and
right), the score estimators learned by NNs are nearly piece-wise linear and can be matched closely
by our ŝt,τ under suitable choices of the smoothing scale, which increases along with the strength
of regularization. This provides empirical evidence that our theoretical analyses based on locally
smoothing the score function may indeed be relevant to understanding NN-based diffusion models.

4.2 INTERPOLATION AS A DYNAMICAL EFFECT OF SCORE SMOOTHING

To illustrate the connection between the interpolation effect and score smoothing, we perform
numerical experiments under the setup studied in Section 3.4 where training data are spaced uniformly
on the first axis. We choose d = 2, n = 4 and D = 1, and compare the outcomes of the denoising
dynamics (2) under four different choices for the score function: (i) the exact ESF (st = ∇ log p

(n)
t ),

(ii) the τt-smoothed ESF (st = τt ∗ ∇ log p
(n)
t ), (iii) the piece-wise linear approximation to the

τt-smoothed ESF (st = ŝ
(n)
t,τt from (20)), and (iv) an NN-learned score function (st = sNN

t ).

All four denoising processes are initialized at t0 = 0.02 with the same marginal distribution xt0 ∼
p
(n)
t0 , the noised empirical distribution at t0, which means (i) is equivalent to the empirical denoising

dynamics. As in Section 3.4, we set the smoothing scale in (ii) and (iii) to be τt = ∆−
√
κt with

κ = 0.4. The ESF is computed from its analytical expression (14), and smoothing is computed
numerically through a Monte-Carlo approximation to the integral (18) with 512 samples. To ensure
numerical stability at small t, we truncate the sampled values of ∇p

(n)
t based on magnitude. At

t0, 4096 realizations of xt0 are sampled from p
(n)
t0 . Then, the ODEs are solved (backward-in-time)

numerically using Euler’s method with step size 0.002 after a change of variable t →
√
t. For (iv),

we parameterize sNN
t (x) by a three-layer MLP applied to both t and x and train it to minimize a

discretized version of (4) without regularization. Details on its training can be found in Appendix A.7
.
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Figure 3: Illustrations of the numerical experiments discussed in Section 4.2 with d = 2 and n = 4
via snapshots at different t. Each column shows the denoising process under one of four choices of the
score function: (i) the exact ESF; (ii) the τt-smoothed ESF; (iii) the piece-wise linear approximation
to the τt-smoothed ESF; (iv) an NN-learned score function. The denoising processes all start from the
marginal distribution p

(n)
t0 at t = t0 and evolve backward-in-time to t = 0 according to the respective

score function. At each of t = t0, t0/2 and 0, we plot the samples from the denoising processes in
R2 and the density histograms of the samples projected onto the first dimension. In the latter, the blue
and the red curves are the analytical predictions of p(n)t0 and the non-singular part of p̂(n)0 (through an
extension of (13) to the case where n = 4), respectively.

Results. The results are illustrated in Figure 3. At t = t0, in all cases, the samples are distributed
as p(n)t0 , a mixture of isotropic Gaussian distributions centered at each of the training data points. As
the denoising dynamics progresses, across (i)−(iii), the variance along the second dimension shrinks
gradually to zero (slightly positive in (ii) due to numerical errors) at a rate that is roughly identical,
consistent with the fact that all three share the same underlying ODE for the second dimension, (22).
Meanwhile, in contrast with the empirical denoising process of (i), where the variance along the first
dimension shrinks to zero as well, we see in (ii) and (iii) that the variance along the first dimension
remains positive for all t, validating the interpolation effect of smoothing the ESF. Remarkably,
the behaviors of (ii) and (iii) remain close throughout the dynamics, providing empirical support
of the piece-wise linear approximation at small t in addition to Lemma 1. Moreover, at t = 0, the
density histograms of (ii) and (iii) are well-matched by our analytical prediction of the non-singular
component of p̂(n)0 in Section 3, providing further validation of our theoretical analysis. Lastly, we
observe a similar interpolation effect in (iv) as in (ii) and (iii) where the generated samples are less
concentrated on the training set but converge to near zero in the second dimension.

5 DISCUSSIONS AND LIMITATIONS

The main motivation of the work is not to propose new designs for diffusion models (an example in
this regard is Scarvelis et al. 2023) but to understand why existing ones can produce new samples
different from the training set. We focus on one hypothesis, that the ability comes from a smoothing

8
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of the score function when learned by NNs, and have provided mathematical and empirical evidence
that score smoothing is indeed sufficient to induce such an ability through an interpolation effect on
the outcome of the denoising dynamics. At the core of this phenomenon are two properties of the
smoothed ESF: reducing the speed of convergence towards training data along the tangential direction
(to avoid memorization) while preserving it along the normal direction (to ensure a convergence
onto the subspace). The decomposition of the score function into tangential and normal components
when data belong to subspaces was also studied by Chen et al. (2023b); Wang & Vastola (2023b). To
our knowledge, our work is novel in showing that the distinct effect of score smoothing on the two
components leads to data interpolation along the subspace.

Limitations. To further validate of this hypothesis, another important question is whether (and
how) score smoothing is achieved in practice, which is not the focus of the current work. There has
been empirical evidence that NNs indeed tend to learn smoother versions of the ESF (Aithal et al.,
2024), though theoretical understandings are still lacking and, admittedly, there is no justification as
to why the smoothing effect caused by NN training should be similar to the type of local smoothing
studied in this paper. We nevertheless hope that our analysis can help to elucidate the phenomenon
and provide intuitions for future work along this line. Another limitation of the present work is the
vastly simplified setup compared to real-world scenarios, which enables us to obtain insights through
mathematically solvable models. It would be very interesting to extend our theory to cases where
training data belong to multi-dimensional and nonlinear manifolds as well as to more general types of
diffusion models (De Bortoli et al., 2021; Albergo et al., 2023; Lipman et al., 2023; Liu et al., 2023).

6 RELATED WORKS

Generalization vs memorization in diffusion models. Several works have studied empirically the
generalization vs memorization behaviors in diffusion generative models, observing the transition
from the former to the latter when the model capacity increases relatively to the training set size (Gu
et al., 2023; Yi et al., 2023; Carlini et al., 2023; Kadkhodaie et al., 2024). Li et al. (2024) showed that
learning the ESF well does not result in generalization, which stresses the discrepancy between it
and the score functions of the true underlying density. When provided with an oracle estimator for
the latter, it has indeed been proved that diffusion models can produce accurate distributions (Song
et al., 2021a; Lee et al., 2022; De Bortoli, 2022; Chen et al., 2023a;c; Benton et al., 2024; Huang
et al., 2024), but the question remains as to how to estimate the true score functions well. When
assuming that the ground truth density or its score function belongs to certain restricted classes (e.g,
densities being Gaussian mixtures, or sub-Gaussian, or belonging to certain smoothness classes; their
score functions being Lipschitz or belonging to reproducing kernel Hilbert spaces), prior works have
constructed score estimators with guaranteed sample complexity and sometimes statistical optimality
(Block et al., 2020; Li et al., 2023; Zhang et al., 2024; Wibisono et al., 2024; Chen et al., 2024;
Gatmiry et al., 2024). Due to their assumptions, these results do not typically apply to the scenario
considered in Section 3.4 where the data are supported on low-dimensional sub-manifolds. A more
fundamental distinction is that, whereas these results concern the estimation of densities from i.i.d.
samples, our work does not assume underlying densities and make the finite training set a starting
point of analysis. Both perspectives have advantages: the former setting is suitable for deriving
sample complexity bounds (but needs assumptions on the underlying distribution), whereas the latter
allows us to exploit the local geometry and derive analytical solutions of the denoising dynamics. In
future works, it will be interesting to also extend our analysis to the density estimation perspective.

Diffusion models and the manifold hypothesis. An influential hypothesis in machine learning
is that high-dimensional real-world data often lie in low-dimensional sub-manifolds (Tenenbaum
et al., 2000; Fefferman et al., 2016), and it has been argued that diffusion models are able to estimate
their intrinsic dimensions (Stanczuk et al., 2024) or learn manifold features in order of descending
variance (Wang & Vastola, 2023a;b). Assuming conditions on the score estimator, Pidstrigach (2022);
De Bortoli (2022) studied the convergence of diffusion models in the case of manifold data. Oko
et al. (2023); Chen et al. (2023b) proved sample complexity guarantees for score estimation using
certain NN models under the manifold hypothesis. Nonetheless, the error bound by Oko et al. (2023)
is in Wasserstein distance and hence less informative about the memorization phenomenon than
KL divergence (e.g., unlike Corollary 5, a finite Wasserstein distance bound does not exclude the
distribution produced by the model from being fully singular). Meanwhile, Chen et al. (2023b)
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focused on a regime where the denoising dynamics is stopped at a fixed tmin > 0 while n → ∞,
and hence unlike Corollary 5, their result does not guarantee the recovery of a density restricted to
the subspace with finite training data. The intricate interplay between n and t and their effect on
memorization have been nicely studied by Biroli et al. (2024) in the case of Gaussian mixture data.

Score smoothing. Aithal et al. (2024) showed empirically that NNs tend to learn smoother versions
of the ESF and argued that this leads to a mode interpolation effect that underlies model hallucination.
Scarvelis et al. (2023) designed alternative closed-form diffusion models by smoothing the ESF,
although the theoretical analysis therein is limited to showing that their smoothed score function is
directed towards certain barycenters of the training data. Inspired by their work, in this paper we
further analyze mathematically the effect of score smoothing on the denoising dynamics.

In summary, our work shows mathematically how smoothing the ESF leads the denoising dynamics
to produce distributions that interpolate among the training data on their subspace, elucidating a
mechanism of potential relevance to both the generalization ability and the hallucination phenomenon
of score-based diffusion models.
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Christopher Scarvelis, Haitz Sáez de Ocáriz Borde, and Justin Solomon. Closed-form diffusion
models. arXiv preprint arXiv:2310.12395, 2023.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International conference on machine learning,
pp. 2256–2265. PMLR, 2015.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
Advances in neural information processing systems, 32, 2019.

Yang Song, Conor Durkan, Iain Murray, and Stefano Ermon. Maximum likelihood training of score-
based diffusion models. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman
Vaughan (eds.), Advances in Neural Information Processing Systems, volume 34, pp. 1415–1428.
Curran Associates, Inc., 2021a. URL https://proceedings.neurips.cc/paper_
files/paper/2021/file/0a9fdbb17feb6ccb7ec405cfb85222c4-Paper.pdf.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In International
Conference on Learning Representations, 2021b. URL https://openreview.net/forum?
id=PxTIG12RRHS.

Jan Pawel Stanczuk, Georgios Batzolis, Teo Deveney, and Carola-Bibiane Schönlieb. Diffusion
models encode the intrinsic dimension of data manifolds. In Forty-first International Conference on
Machine Learning, 2024. URL https://openreview.net/forum?id=a0XiA6v256.

Joshua B. Tenenbaum, Vin de Silva, and John C. Langford. A global geometric framework for non-
linear dimensionality reduction. Science, 290(5500):2319–2323, 2000. doi: 10.1126/science.290.
5500.2319. URL https://www.science.org/doi/abs/10.1126/science.290.
5500.2319.

Tom Tirer, Joan Bruna, and Raja Giryes. Kernel-based smoothness analysis of residual networks. In
Mathematical and Scientific Machine Learning, pp. 921–954. PMLR, 2022.

Pascal Vincent. A connection between score matching and denoising autoencoders. Neural Computa-
tion, 23(7):1661–1674, 2011. doi: 10.1162/NECO a 00142.

Binxu Wang and John J Vastola. Diffusion models generate images like painters: an analytical theory
of outline first, details later. arXiv preprint arXiv:2303.02490, 2023a.

Binxu Wang and John J Vastola. The hidden linear structure in score-based models and its application.
arXiv preprint arXiv:2311.10892, 2023b.

Andre Wibisono, Yihong Wu, and Kaylee Yingxi Yang. Optimal score estimation via empirical bayes
smoothing. arXiv preprint arXiv:2402.07747, 2024.

Zhi-Qin John Xu, Yaoyu Zhang, Tao Luo, Yanyang Xiao, and Zheng Ma. Frequency principle:
Fourier analysis sheds light on deep neural networks. arXiv preprint arXiv:1901.06523, 2019.

Mingyang Yi, Jiacheng Sun, and Zhenguo Li. On the generalization of diffusion model. arXiv
preprint arXiv:2305.14712, 2023.

Kaihong Zhang, Heqi Yin, Feng Liang, and Jingbo Liu. Minimax optimality of score-based diffusion
models: Beyond the density lower bound assumptions. In Forty-first International Conference on
Machine Learning, 2024. URL https://openreview.net/forum?id=wTd7dogTsB.

12

https://proceedings.neurips.cc/paper_files/paper/2021/file/0a9fdbb17feb6ccb7ec405cfb85222c4-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/0a9fdbb17feb6ccb7ec405cfb85222c4-Paper.pdf
https://openreview.net/forum?id=PxTIG12RRHS
https://openreview.net/forum?id=PxTIG12RRHS
https://openreview.net/forum?id=a0XiA6v256
https://www.science.org/doi/abs/10.1126/science.290.5500.2319
https://www.science.org/doi/abs/10.1126/science.290.5500.2319
https://openreview.net/forum?id=wTd7dogTsB


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

A APPENDIX

Notations For functions f, g : R+ → R+, we will write f(t) = O(g(t)) if ∃c, C > 0 such that
∀t ∈ (0, c), it holds that f(t) ≤ Cg(t).

A.1 GENERALIZATION OF LEMMA 1 AND ITS PROOF

Lemma 7. Under the setting considered in Section 3.3 with S = {yk}k∈[n] ⊆ [−D,D], ∀τ ∈ [0,∆],

there is tE
x∼p

(n)
t

[∥(τ ∗ s̄(n)t )(x)− (τ ∗ d
dx log p

(n)
t )(x)∥2] = O(exp(− (∆−τ)2

16t )).

Proof : By the definition of p(n)t , it suffices to show that ∀k ∈ [n],∫
|(τ ∗ d

dx log p
(n)
t )(x)− (τ ∗ s̄(n)t )(x)|2pN (x− yk;

√
t)dx = O(exp(−(∆− τ)2/(16t))) .

Consider any k ∈ [n]. The left-hand-side above can be rewritten as∫ ∞

−∞

∣∣∣∣ 12τ
∫ x+τ

x−τ

d
dx log p

(n)
t (x′)dx′ − 1

2τ

∫ x+τ

x−τ

s̄
(n)
t (x′)dx′

∣∣∣∣2 pN (x− yk;
√
t)dx

=

∫ ∞

−∞

∣∣∣∣ 12τ
∫ x+τ

x−τ

(
d
dx log p

(n)
t (x′)− s̄

(n)
t (x′)

)
dx′
∣∣∣∣2 pN (x− yk;

√
t)dx

≤
∫ ∞

−∞

1

2τ

∫ x+τ

x−τ

∣∣∣ d
dx log p

(n)
t (x′)− s̄

(n)
t (x′)

∣∣∣2 dx′pN (x− yk;
√
t)dx

=

∫ ∞

−∞

∣∣∣ d
dx log p

(n)
t (x′)− s̄

(n)
t (x′)

∣∣∣2( 1

2τ

∫ x′+τ

x′−τ

pN (x′ − yk;
√
t)dx

)
dx′

If x ≥ yk +
1
2 (∆+ τ) > yk + τ , there is supx∈[x′−τ,x′+τ ] pN (x− yk;

√
t) ≤ pN (x′ − yk − τ ;

√
t).

Hence, also noticing that | d
dx log p

(n)
t (x)|, |s̄(n)t (x)| ≤ (|x|+ 2D)/t, we obtain that

∫ ∞

yk+
1
2 (∆+τ)

∣∣∣ d
dx log p

(n)
t (x′)− s̄

(n)
t (x′)

∣∣∣2( 1

2τ

∫ x′+τ

x′−τ

pN (x− yk;
√
t)dx

)
dx′

≤ 1√
2πt

∫ ∞

yk+
1
2 (∆+τ)

∣∣∣ d
dx log p

(n)
t (x′)− s̄

(n)
t (x′)

∣∣∣2 exp(− (x′ − yk − τ)2

2t

)
dx

≤ 1√
2πt

∫ ∞

yk+
1
2 (∆+τ)

4(|x′|+ 2D)2

t2
exp

(
− (x′ − yk − τ)2

2t

)
dx

≤ 1√
2πt

∫ ∞

yk+
1
2 (∆+τ)

4(|x′ − yk − τ |+ 4D)2

t2
exp

(
− (x′ − yk − τ)2

2t

)
dx

≤ 8√
2πt3

∫ ∞

yk+
1
2 (∆+τ)

((
x′ − yk − τ√

t

)2

+ 16D2

)
exp

(
− (x′ − yk − τ)2

2t

)
dx

=
8√
2πt3

∫ ∞

∆−τ

2
√

t

(
x2 + 16D2

)
exp

(
−x2/2

)
dx

≤ 8√
2πt3

(
16D2

√
π

2
+

∆− τ

2
√
t

)
exp

(
− (∆− τ)2

8t

)
= O

(
t−2 exp

(
− (∆− τ)2

8t

))

(23)

A similar bound can be derived when the outer integral is integrated from −∞ to yk − 1
2 (∆ + τ).
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Next, suppose x ∈ [yk − 1
2 (∆ + τ), yk + 1

2 (∆ + τ)]. Then there is |x − yk| ≤ 1
2 (∆ + τ) while

|x− yk| ≥ 3
2∆− 1

2τ for l ̸= k. Thus, it holds for any l ̸= k that

pN (x− yk;
√
t)

pN (x− xl;
√
t)

= exp

(
−|x− yk|2 − |x− x2

l |
2t

)
≥ exp

(
∆(∆− τ)

t

)
Hence, writing qt,k(x) :=

pN (x−yk;
√
t)∑n

l=1 pN (x−xl;
√
t)

, there is qt,k(x) ≥ 1 − (n − 1) exp
(
−∆(∆−τ)

t

)
and

for l ̸= k, qt,l(x) < exp
(
−∆(∆−τ)

t

)
. Therefore,∣∣∣s(n)t (x)− s̄

(n)
t,τ (x)

∣∣∣ ≤ |(qt,k(x)− 1)yk|+
∑

l ̸=k |qt,k(x)yk|
t

≤ 2(n− 1)D

t
exp

(
−∆(∆− τ)

t

)
= O

(
t−1 exp

(
−∆(∆− τ)

t

))
.

(24)

Since 1
2τ

∫ x′+τ

x′−τ
pN (x− yk;

√
t)dx ≤ 1

2π for any x′, we then have∫ yk+
1
2 (∆+τ)

yk− 1
2 (∆+τ)

∣∣∣ d
dx log p

(n)
t (x′)− s̄

(n)
t (x′)

∣∣∣2( 1

2τ

∫ x′+τ

x′−τ

pN (x− yk;
√
t)dx

)
dx′

≤ ∆+ τ

2τ
sup

yk− 1
2 (∆+τ)≤x′≤yk+

1
2 (∆+τ)

∣∣∣s(n)σ (x)− s̄
(n)
σ,k(x)

∣∣∣2
= O

(
t−2 exp

(
−2∆(∆− τ)

t

)) (25)

Combining (23) with (25) yields the desired result.

A.2 GENERALIZATION OF PROPOSITION 2 AND ITS PROOF

Proposition 8. There is a function F : R → [0, 1] such that, if t → 0 and τ → ∆ with (∆− τ)2/t =
κ > 0, then there is

tE
x∼p

(n)
t

[
|ŝ(n)t,τ (x)− d

dx log p
(n)
t (x)|2

]
= n−1

n F (κ) +O(
√
t) . (26)

Moreover, F (κ) strictly decreases from 1 to 0 as κ increases from 0 to ∞.

Proof : We will write δ = ∆− τ and σ =
√
t for simplicity. By Lemma 1, we only need to show that

t

∫
|ŝ(n)t,τ (x)− s̄

(n)
t (x)|2p(n)σ (x)dx = n−1

n F (κ) +O(
√
t) .

By the definition of p(n)σ , it suffices to separately consider the integral with respect to the density
pN (x− xk;σ) for each k ∈ [n]. We define

xk,− =

{
−∞ , if k = 1

xk − δ , otherwise
, xk,+ =

{
∞ , if k = n

xk + δ , otherwise

By construction, ŝ(n)t,τ is a piece-wise linear function where the slope is changed only at each xk,−

and xk,+. In particular, for k ∈ [n], there is ŝ(n)t,τ (x) = s̄
(n)
t (x) when x ∈ [xk,−, xk,+]. Hence, we

only need to estimate the difference between the two outside of [xk,−, xk,+].

We first consider the interval [xk,+, xk +∆] = [xk + δ, xk +∆], on which it holds that

ŝ
(n)
t,τ (x)− s̄

(n)
t (x) =

∆

t
· x− (xk + δ)

τ
, (27)
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by the linearity of the two functions. Hence,

t

∫ xk+∆

xk+δ

|ŝ(n)t,τ (x)− s̄
(n)
t (x)|2pN (x− xk;σ)dx

=

(
∆

∆− δ

)2 ∫ xk+∆

xk+δ

∣∣∣∣x− xk

σ
− δ

σ

∣∣∣∣2 pN (x− xk;σ)dx

=

(
∆

∆− δ

)2(∫ ∞

xk+δ

∣∣∣∣x− xk

σ
− δ

σ

∣∣∣∣2 pN (x− xk;σ)dx

−
∫ ∞

xk+∆

∣∣∣∣x− xk

σ
− δ

σ

∣∣∣∣2 pN (x− xk;σ)dx

)
(28)

Note that ∫ ∞

xk+δ

∣∣∣∣x− xk

σ
− δ

σ

∣∣∣∣2 pN (x− xk;σ)dx =
1

2
F (κ) , (29)

where we define F (κ) := 2
∫∞
κ

|u− κ|2pN (u; 1)du. It is straightforward to see that, as κ increases
from 0 to ∞, F strictly decreases from 1 to 0. Therefore,

t

∫ xk+∆

xk+κσ

|ŝ(n)t,τ (x)− s̄
(n)
t (x)|2pN (x− xk;σ)dx

=

(
∆

τ

)2
(
F (κ)−

∫ ∞

∆/σ

|u− κ|2 pN (u; 1)dx

)

=
1

2
F (κ) +O(σ)

(30)

Next, we consider the interval [xk +∆,∞), in which we have

|ŝ(n)t,τ (x)− s̄
(n)
t (x)| ≤ ∆

t
. (31)

Thus,

t

∫ ∞

xk+∆

|ŝ(n)t,τ (x)− s̄
(n)
t (x)|2pN (x− xk;σ)dx ≤ t

∫ ∞

xk+∆

∣∣∣∣∆t
∣∣∣∣2 pN (x− xk;σ)dx

=
∆2

t

∫ ∞

∆/δ

pN (u; 1)du

= O

(
∆2

t
exp

(
−∆2

2t

))
.

(32)

Hence, we have

t

∫ ∞

xk+κδ

|ŝ(n)t,τ (x)− s̄
(n)
t (x)|2pN (x− xk;σ)dx =

1

2
F (κ) +O(σ) . (33)

Similarly, for k ∈ {2, ..., n}, we can show that

t

∫ xk−κδ

−∞
|ŝ(n)t,τ (x)− s̄

(n)
t (x)|2pN (x− xk;σ)dx =

1

2
F (κ) +O(σ) . (34)

Thus, there is

t

∫ ∞

−∞
|ŝ(n)t,τ (x)− s̄

(n)
t (x)|2pN (x− xk;σ)dx =

{
F (κ) +O(σ) , if k ∈ {2, ..., n− 1}
1
2F (κ) +O(σ) , if k = 1 or n .

(35)

Summing them together, we get that

t

∫ ∞

−∞
|ŝ(n)t,τ (x)− s̄

(n)
t (x)|2p(n)σ (x)dx =

n− 1

n
F (κ) +O(σ) . (36)
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A.3 ALTERNATIVE DEFINITION OF LOCAL SMOOTHING IN HIGHER DIMENSIONS

Given a compact set of vectors, A ⊆ Rd, we define its element with minimum Euclidean norm as

γ(A) :=

{
argminv∈A ∥v∥2 , if argminv∈A ∥v∥2 is unique
0 , otherwise

Given τ > 0 and a vector-valued function f on Rd, as an alternative to (18), we define

(τ ∗ f)(x) := γ

({
1

2τ

∫ τ

−τ

f(x+ rv)dr : v ∈ Sd−1

})
. (37)

Note that this definition is invariant to translations and rotations to the Euclidean space.

As in the main text, we will approximate the first component of the ESF, ∂1 log p
(n)
t , by a piece-wise

linear function when t is small, therefore focusing on:

s̄
(n)
t (x) := [s̄

(n)
t (x1),−x2/t, ...,−xd/t]

⊺ ≈ ∇ log p
(n)
t (x) ,

as a proxy to the ESF.

To ease notations, we write sτ,v(x) :=
1
2τ

∫ τ

−τ
s̄
(n)
t (x+ rv)dr. For i > 1, thanks to the linearity of

∂i log p
(n)
t (x), we have that [sτ,v(x)]i = ∂i log p

(n)
t (x) = −xi/t. For i = 1, there is

[sτ,v(x)]1 =
1

2τt

∫ τ

−τ

s̄
(n)
t (x1 + rv1)dr

=
1

2τ |v1|t

∫ τ |v1|

−τ |v1|
s̄
(n)
t (x1 + r̃)dr̃

= ((τ |v1|) ∗ s̄(n)t )(x1) .

Therefore, we obtain that{
sτ,v(x) : v ∈ Sd−1} = {[ŝ(n)t,τ̃ (x1),−x2/t, ...,−xd/t]

⊺ : τ̃ ∈ [0, τ ]
}
.

From (9) and Figure 1, it is clear that for any fixed x, ŝ(n)t,τ̃ (x) keeps the same sign as τ̃ ranges from 0
to τ while its absolute value decreases. Therefore, we derive that

(τ ∗ s̄(n)t )(x) = γ(
{
sτ,v(x) : v ∈ Sd−1}) = [ŝ

(n)
t,τ (x1),−x2/t, ...,−xd/t]

⊺ .

Hence, if we choose τt = ∆ −
√
κt, we see that the dynamics described by (21) and (22) indeed

agrees with
d
dtxt = − 1

2 (τ ∗ s̄(n)t )(xt) ,

under the alternative definition of (37) as well.

A.4 PROOF OF LEMMA 4

KL(u[−1,1]||p0) =
∫ 1

−1

1

2
· (− log 2− log(p0(x)))dx

= − log 2− 1

2

∫ 1

−1

log(p̃t(x))dx

= − log 2− 1

2(1−
√
κt)

∫ 1−
√
κt

−1+
√
κt

(
log(1−

√
κt) + log(pt(x

′))
)
dx′

=
1

2(1−
√
κt)

∫ 1−
√
κt

−1+
√
κt

log(1/(2(1−
√
κt)))− log(pt(x

′))dx′

= KL(u[−1+
√
κt,1−

√
κt]||pt)
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A.5 PROOF OF PROPOSITION 3

We consider each of three cases separately.

Case I: x ∈ [−1 +
√
κt, 1 −

√
κt]. In this case, it is easy to verify that xs = 1−

√
κs

1−
√
κt
x is a valid

solution to the ODE
d

ds
xs = −1

2

√
κs

1−
√
κs

xs

s
,

on [0, t] that satisfies the terminal condition xt = x. It remains to verify that for all s ∈ (0, t), it
holds that xs ∈ [−1 +

√
κs, 1−

√
κs] (i.e., the entire trajectory during [0, t] remains in region B).

Suppose that x ≥ 0, in which case it is clear that xs ≥ 0, ∀s ∈ [0, t]. Moreover, it holds that

xs − (1−
√
κs) =

1−
√
κs

1−
√
κt

(xt − (1−
√
κt)) ≤ 0

Therefore, xs ∈ [0, 1−
√
κs] ⊆ [−1 +

√
κs, 1−

√
κs]. A similar argument can be made if x < 0.

Case II: x ≤ −1 +
√
κt. In this case, it is also easy to verify that xs =

√
s
t (x+ 1)− 1 is a valid

solution to the ODE
d

ds
xs =

1

2

x+ 1

s
,

on [0, t] that satisfies the terminal condition xt = x. It remains to verify that for all s ∈ (0, t), it holds
that xs ≤ −1 +

√
κs (i.e., the entire trajectory during [0, t] remains in region A). This is obvious

because

(xs + 1)−
√
κs =

√
s

t
(x+ 1)−

√
κs =

√
s

t
(x+ 1−

√
κt) ≤ 0 .

Case III: x ≥ 1−
√
κt. A similar argument can be made as in Case II above.

A.6 PROOF OF COROLLARY 5

By symmetry, we only need to consider the right half of the interval, [0, τt0 ], on which there is
pt0(x) = p

(n)
t0 (x) ≥ 1

2pN (x− 1;
√
t0). There is∫ τt0

0

log
(
pN (x− 1;

√
t0)
)
dx =

∫ −
√
κt0

−1

log
(

1√
2πt0

exp(−x2/t0)
)
dx

= − 1−
√
κt0

2 (log(2π) + log(t0))− 1
t0

∫ −
√
κt

−1

x2dx

≥ − 1−
√
κt0

2 (log(2π) + log(t0))− 1
3t0

.

Therefore,

KL(u[0,τt0 ]
||pt0) =

1

τt0

∫ τt0

0

log(1/τt0)− log

(
1

2
pN (x− 1;

√
t0)

)
dx

≤ − log(1−
√
κt) + log(2)− 1

1−
√
κt0

(
− 1−

√
κt0

2 (log(2π) + log(t0))− 1
3t0

)
≤ 1

3t0(1−
√
κt0)

+ log
( √

t0
1−

√
κt0

)
+ log(2

√
2π) .

By symmetry, the same bound can be obtained for KL(u[−τt0 ,τt0 ]
||pt0), which yields the desired

result when combined with Lemma 4.
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A.7 ADDITIONAL DETAILS ON THE NUMERICAL EXPERIMENTS

Figure 1 (left): We chose t = 0.1 and τ = 0.58.

Figure 1 (center): We trained three-layer MLP to fit the ESF at t = 0.1. The model is trained by the
Adam optimizer with learning rate 0.001 for 1200 steps and using weight decay (i.e., L2 regularization
on the model parameters) with various strengths, λ. At each training step, the optimization objective
is an approximation of the expectation that appears in 4 based on a batch of 1024 samples from p

(n)
t .

We considered three choices of λ: λ1 = 0.005, λ2 = 0.01 and λ3 = 0.02.

Figure 1 (right): We chose t = 0.1 and three values of τ : τ1 = 0.35, τ2 = 0.42, and τ3 = 0.53,
which were picked manually to match the corresponding curves in Figure 1 (center).

Figure 3: After rescaling it by
√
t, we parameterize the score function by a three-layer MLP applied

to the concatenation of log(t) and x, where the log transform serves to reduce the effect of weight
sharing t when t is close to zero. We train the model to fit the ESF for t ∈ [0, t0] with t0 = 0.02. At
each step, the optimization objective is an approximation of the integral in 4 (with T set to be t0)
based on sampling t uniformly from [0, t0] and then x from p

(n)
t . We used the Adam optimizer with

learning rate 0.004, batch size 16 and a total number of 3000 steps.
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